Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.380
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667766

RESUMO

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Assuntos
Iminas , Toxinas Marinhas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinhas/química , Toxinas Marinhas/farmacologia , Toxinas Marinhas/toxicidade , Iminas/química , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Relação Estrutura-Atividade
2.
J Org Chem ; 89(8): 5746-5763, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38597924

RESUMO

Racemic total synthesis of the natural product oxacyclododecindione, isolated in 2008 as the first member of the oxacyclododecindione family, is reported. Studies toward this molecule commenced with a biomimetic late-stage C-H oxidation starting from 14-deoxyoxacyclododecindione as a known precursor. This provided insights into the reactivity of the macrolactone class but did not permit the synthesis of the target natural product. Based on these results, a synthetic strategy through intramolecular Friedel-Crafts acylation combined with Barton decarboxylation to introduce the tertiary alcohol, a major challenge in previous synthetic efforts, was envisioned. This resulted in an 11-step racemic total synthesis of (±)-oxacyclododecindione, renowned for its potent anti-inflammatory and antifibrotic activities.


Assuntos
Produtos Biológicos , Compostos Macrocíclicos , Anti-Inflamatórios , Acilação
3.
Anal Chem ; 96(16): 6467-6475, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602368

RESUMO

Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to ∼158.7 µs) and high quantum yield (up to ∼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from ∼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (∼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.


Assuntos
Compostos Heterocíclicos com 2 Anéis , Imidazóis , Imidazolidinas , Compostos Macrocíclicos , Humanos , Imidazóis/química , Silício/química , Nanopartículas/química , Hipóxia Celular , Hidrocarbonetos Aromáticos com Pontes/química , Imagem Óptica , Corantes Fluorescentes/química , Medições Luminescentes , Naftalenos/química , Fatores de Tempo , Células HeLa
4.
J Med Chem ; 67(8): 6099-6118, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38586950

RESUMO

The duality of function (cell cycle regulation and gene transcription) of cyclin-dependent kinase 7 (CDK7) makes it an attractive oncology target and the discovery of CDK7 inhibitors has been a long-term pursuit by academia and pharmaceutical companies. However, achieving selective leading compounds is still difficult owing to the similarities among the ATP binding pocket. Herein, we detail the design and synthesis of a series of macrocyclic derivatives with pyrazolo[1,5-a]-1,3,5-triazine core structure as potent and selective CDK7 inhibitors. The diverse manners of macrocyclization led to distinguished selectivity profiles of the CDK family. Molecular dynamics (MD) simulation explained the binding difference between 15- and 16-membered macrocyclic compounds. Further optimization generated compound 37 exhibiting good CDK7 inhibitory activity and high selectivity over other CDKs. This work clearly demonstrated macrocyclization is a versatile method to finely tune the selectivity profile of small molecules and MD simulation can be a valuable tool in prioritizing designs of the macrocycle.


Assuntos
Quinases Ciclina-Dependentes , Desenho de Fármacos , Compostos Macrocíclicos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinase Ativadora de Quinase Dependente de Ciclina
5.
Science ; 384(6694): 420-428, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662830

RESUMO

Small macrocycles with four or fewer amino acids are among the most potent natural products known, but there is currently no way to systematically generate such compounds. We describe a computational method for identifying ordered macrocycles composed of alpha, beta, gamma, and 17 other amino acid backbone chemistries, which we used to predict 14.9 million closed cycles composed of >42,000 monomer combinations. We chemically synthesized 18 macrocycles predicted to adopt single low-energy states and determined their x-ray or nuclear magnetic resonance structures; 15 of these were very close to the design models. We illustrate the therapeutic potential of these macrocycle designs by developing selective inhibitors of three protein targets of current interest. By opening up a vast space of readily synthesizable drug-like macrocycles, our results should considerably enhance structure-based drug design.


Assuntos
Compostos Macrocíclicos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Desenho de Fármacos , Cristalografia por Raios X , Descoberta de Drogas , Aminoácidos/química , Amidas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Produtos Biológicos/química , Conformação Molecular , Nylons/química , Nylons/síntese química , Modelos Moleculares
6.
Int J Biol Macromol ; 265(Pt 1): 130680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462121

RESUMO

The catechol moiety found within mussel proteins plays a pivotal role in enhancing their adhesive properties. Nonetheless, catechol compounds, such as dopamine (DOP) derivatives, are susceptible to oxidation, leading to the formation of quinone. This oxidation process poses a significant challenge in the development of DOP-based hydrogels, hampering their adhesion capabilities and hindering polymerization. To protect DOP moieties from oxidation, DOP and N-(3-aminopropyl)methacrylamide (AMA) moieties were grafted onto the side groups of biocompatible poly(glutamic acid) (PGA). Subsequently, the DOP unit, serving as a second guest, would be captured by a polymerizable rotaxane of cucurbituril (CB[n]), in which the host molecule CB[8] complexed with the first guest, polymerizable methyl viologen (MV), forming a protective function and dynamic cross-linking. Upon exposure to light curing, a composite network emerged through the synergy of covalent cross-linking and supramolecular host-guest complexation of DOP with CB[8]. The generated complexation between DOP and CB[8] could protect the DOP moieties, resulting in photocured hydrogels with exceptional adhesive strength and remarkable tensile capabilities. Moreover, 3D printing technology was used to create various models with these DOP-based hydrogels, demonstrating their promising applications in future.


Assuntos
Compostos Macrocíclicos , Rotaxanos , Hidrogéis , Dopamina , Adesivos
8.
Analyst ; 149(6): 1738-1745, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38324339

RESUMO

Carrier-based polymeric membrane potentiometric sensors are an ideal tool for detecting ionic species. However, in the fabrication of these sensors, the screening of carriers still relies on empirical trial- and error-based optimization, which requires tedious and time-consuming experimental verification. In this work, computer-aided screening of carriers is applied in the preparation of polymeric membrane potentiometric sensors. Molecular docking is used to study the host-guest interactions between receptors and targets. Binding energies are employed as the standard to screen the appropriate carrier. As a proof-of-concept experiment, the antibiotic ciprofloxacin is selected as the target model. A series of supramolecular macrocyclic receptors including cyclodextrins, cucurbiturils and calixarenes are chosen as potential receptors. The proposed sensor based on the receptor calix[4]arene screened by molecular docking shows a lower detection limit of 0.5 µmol L-1 for ciprofloxacin. It can be expected that the proposed computer-aided screening technique of carriers can provide a simple but highly efficient method for the fabrication of carrier-based electrochemical and optical sensors.


Assuntos
Calixarenos , Compostos Macrocíclicos , Antibacterianos , Simulação de Acoplamento Molecular , Potenciometria , Compostos Macrocíclicos/química , Polímeros/química , Calixarenos/química , Ciprofloxacina
9.
Eur J Med Chem ; 268: 116234, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401189

RESUMO

Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.


Assuntos
Antineoplásicos , Compostos Macrocíclicos , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Descoberta de Drogas , Proteínas/química , Permeabilidade da Membrana Celular , Antineoplásicos/farmacologia
13.
Drugs ; 84(2): 239-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38279972

RESUMO

Repotrectinib (AUGTYRO™) is a next-generation, oral, small-molecule kinase inhibitor of proto-oncogene tyrosine-protein kinase ROS1 (ROS1) and tropomyosin receptor tyrosine kinases (TRKs) TRKA, TRKB, and TRKC. It is being developed by Turning Point Therapeutics, a wholly owned subsidiary of Bristol-Myers Squibb (BMS), for the treatment of locally advanced or metastatic solid tumours, including non-small cell lung cancer (NSCLC). Repotrectinib is a next-generation tyrosine kinase inhibitor rationally designed to inhibit ROS1 and TRK fusion, including in the presence of resistance mutations such as solvent-front mutations. In November 2023, repotrectinib received its first approval in the USA for the treatment of adults with locally advanced or metastatic ROS1-positive NSCLC. Repotrectinib is under regulatory review in China and the EU for NSCLC. Clinical studies of repotrectinib are ongoing in several countries in patients with NSCLC and other solid tumours (including primary central nervous system cancer) across both adult and paediatric patient populations. In addition, preclinical investigation of repotrectinib in multiple myeloma is underway in the USA. This article summarizes the milestones in the development of repotrectinib leading to this first approval for the treatment of locally advanced or metastatic ROS1-positive NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos Macrocíclicos , Pirazóis , Adulto , Criança , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina
15.
Org Lett ; 26(5): 1100-1104, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38295374

RESUMO

The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a cct amide sequence and cyclic tetramer has a saddle-like structure with an uncommon cccc amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.


Assuntos
DNA , Peptoides , Amidas/química , Cristalografia por Raios X , DNA/química , Biblioteca Gênica , Compostos Macrocíclicos/química , Conformação Molecular , Peptoides/química
16.
Chempluschem ; 89(1): e202300592, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902382

RESUMO

Invited for this month's cover are the collaborating groups of Prof. Serena Riela at University of Catania, Prof. César Viseras at University of Granada and Dr. Ignacio Sainz-Diaz at Instituto Andaluz de Ciencias de la Tierra. The cover picture shows the possible application of the developed system. In particular, flufenamic acid, anti-inflammatory and anti-pyretic drug, was complexed into cucurbituril cavity and the supramolecular system obtained was used as filler for laponite® hydrogel for its topical delivery. More information can be found in the Research Article by Viseras-Iborra, Riela, and co-workers.


Assuntos
Ácido Flufenâmico , Compostos Macrocíclicos , Silicatos , Humanos , Hidrogéis
17.
Eur J Med Chem ; 264: 116051, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104377

RESUMO

Macrocyclic compounds, characterized by cyclic structures, often originate from either modified forms of unicyclic canonical molecules or natural products. Within the field of medicinal chemistry, there has been a growing fascination with drug-like macrocycles in recent years, primarily due to compelling evidence indicating that macrocyclization can significantly influence both the biological and physiochemical properties, as well as the selectivity, when compared to their acyclic counterparts. The approval of contemporary pharmaceutical agents like Lorlatinib underscore the notable clinical relevance of drug-like macrocycles. Nonetheless, the synthesis of these drug-like macrocycles poses substantial challenges, primarily stemming from the complexity of ring-closing reactions, which are inherently dependent on the size and geometry of the bridging linker, impacting overall yields. Nevertheless, macrocycles offer a promising avenue for expanding the synthetic toolkit in medicinal chemistry, enabling the creation of bioactive compounds. To shed light on the subject, we delve into the clinical prowess of established macrocyclic drugs, spanning various therapeutic areas, including oncology, and infectious diseases. Case studies of clinically approved macrocyclic agents illustrate their profound impact on patient care and disease management. As we embark on this journey through the world of macrocyclic pharmaceuticals, we aim to provide a comprehensive overview of their synthesis and clinical applications, shedding light on the pivotal role they play in modern medicine.


Assuntos
Produtos Biológicos , Compostos Macrocíclicos , Humanos , Compostos Macrocíclicos/química , Lactamas Macrocíclicas , Química Farmacêutica , Preparações Farmacêuticas
18.
J Chem Inf Model ; 63(21): 6938-6946, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37908066

RESUMO

End-point free-energy methods as an indispensable component in virtual screening are commonly recognized as a tool with a certain level of screening power in pharmaceutical research. While a huge number of records could be found for end-point applications in protein-ligand, protein-protein, and protein-DNA complexes from academic and industrial reports, up to now, there is no large-scale benchmark in host-guest complexes supporting the screening power of end-point free-energy techniques. A good benchmark requires a data set of sufficient coverage of pharmaceutically relevant chemical space, a long-time sampling length supporting the trajectory approximation of the ensemble average, and a sufficient sample size of receptor-acceptor pairs to stabilize the performance statistics. In this work, selecting a popular family of macrocyclic hosts named cucurbiturils, we construct a large data set containing 154 host-guest pairs, perform extensive end-point sampling of several hundred nanosecond lengths for each system, and extract the free-energy estimates with a variety of end-point free-energy techniques, including the advanced three-trajectory dielectric-constant-variable regime proposed in our recent work. The best-performing end-point protocol employs GAFF2 for solute descriptions, the three-trajectory end-point sampling regime, and the MM/GBSA Hamiltonian in free-energy extraction, achieving a high ranking metrics of Kendall τ > 0.6, a Pearlman predictive index of ∼0.8, and a high scoring power of Pearson r > 0.8. The current project as the first large-scale systematic benchmark of end-point methods in host-guest complexes in academic publications provides solid evidence of the applicability of end-point techniques and direct guidance of computational setups in practical host-guest systems.


Assuntos
Compostos Macrocíclicos , Simulação de Dinâmica Molecular , Termodinâmica , Entropia , Compostos Macrocíclicos/química , Ligantes
19.
Biosensors (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998127

RESUMO

Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.


Assuntos
Carcinógenos Ambientais , Ciclodextrinas , Compostos Macrocíclicos , Neoplasias , Receptores Artificiais , Humanos , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
20.
ACS Chem Biol ; 18(12): 2582-2589, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944119

RESUMO

Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material and that different conformations of flexible compounds can be derived from the same experiment. These results will have an impact on contemporary drug discovery as well as natural product exploration.


Assuntos
Compostos Macrocíclicos , Pós , Conformação Molecular , Compostos Macrocíclicos/química , Sítios de Ligação , Descoberta de Drogas , Microscopia Crioeletrônica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...